Signal Processing Technique for Combining Numerous MEMS Gyroscopes Based on Dynamic Conditional Correlation

نویسندگان

  • Jieyu Liu
  • Qiang Shen
  • Weiwei Qin
چکیده

A signal processing technique is presented to improve the angular rate accuracy of Micro-Electro-Mechanical System (MEMS) gyroscope by combining numerous gyroscopes. Based on the conditional correlation between gyroscopes, a dynamic data fusion model is established. Firstly, the gyroscope error model is built through Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process to improve overall performance. Then the conditional covariance obtained through dynamic conditional correlation (DCC) estimator is used to describe the correlation quantitatively. Finally, the approach is validated by a prototype of the virtual gyroscope, which consists of six-gyroscope array. The experimental results indicate that the weights of gyroscopes change with the value of error. Also, the accuracy of combined rate signal is improved dramatically compared to individual gyroscope. The results indicate that the approach not only improves the accuracy of the MEMS gyroscope, but also discovers the fault gyroscope and eliminates its influence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-Loop Compensation of the Quadrature Error in MEMS Vibratory Gyroscopes

In this paper, a simple but effective method for compensation of the quadrature error in MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback readout system were analyzed and the proposed solution assures good rejection capabilities. Based on ...

متن کامل

Converter for Frequency-Output MEMS Gyroscopes

Frequency-modulated operation of MEMS gyroscopes promises numerous benefits, including inherently accurate scale factor, improved bias stability, high dynamic range, and low power dissipation. An FM demodulator based on sigmadelta frequency-to-digital conversion decouples dynamic range from power dissipation to achieve a resolution of 41.1μHz in a 50Hz bandwidth for a 30 kHz signal (2.1mdeg/s/ ...

متن کامل

Analysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes

In this paper, the dynamic performance of a Kalman filter (KF) was analyzed, which is used to combine multiple measurements of a gyroscopes array to reduce the noise and improve the accuracy of the individual sensors. A principle for accuracy improvement by the KF was briefly presented to obtain an optimal estimate of input rate signal. In particular, the influences of some crucial factors on t...

متن کامل

Comprehensive Electromechanical Analysis of MEMS Variable Gap Capacitors

This paper presents a comprehensive case study on electro-mechanical analysis of MEMS[1] variable capacitors. Using the fundamental mechanical and electrical equations, static and dynamic behaviors of the device are studied. The analysis is done for three different modes, namely: dc (static mode), small signal ac and large signal regime. A complete set of equations defining dynamic behavior of ...

متن کامل

Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve Accuracy

In this paper, the performance of two Kalman filter (KF) schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system (MEMS) gyroscopes. The principles for noise reduction were presented and KF algorithms were designed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015